

Wind-Diesel Hybrid System Options for Alaska

Steve Drouilhet
National Renewable Energy Laboratory
Golden, CO

Wind-Diesel Hybrid Power Systems

Basic Concept

A wind-diesel hybrid system combines wind turbine(s) with diesel generator(s) to obtain a maximum contribution by the intermittent wind resource while providing continuous high quality electric power.

- Objectives
 - Reduce system fossil fuel consumption
 - Reduce diesel run time (high penetration systems only)
- Benefits
 - Reduced system operating costs
 - Reduced environmental impacts

Why Wind-Diesel?

Diesel:

- Large installed base of diesel power plants
- Lots of diesel operating experience
- Existing fuel and service infrastructure
- Relatively low capital cost compared to other dispatchable generators
- Since the objective is to use the generator as little as possible, it's important to minimize its cost.

Why Wind-Diesel?

Wind Turbines:

- Wind is a totally clean indigenous energy source.
- Wind power is the least cost of all renewables (except for large hydro).
- Many Alaskan coastal regions have an excellent wind resource year round.
- With the right equipment, wind turbines are relatively easy to install.
- With proper training, a typical diesel mechanic can handle most maintenance and repair procedures.
- Wind energy is mature technology.

Definition of Wind Penetration

Instantaneous Penetration =
$$\frac{\text{Wind Power Output (kW)}}{\text{Primary Electrical Load (kW)}}$$

Average Penetration =
$$\frac{\text{Wind Energy Produced (kWh)}}{\text{Primary Energy Demand (kWh)}}$$

Classification of Wind-Diesel Hybrid Systems by Wind Penetration

PENETRATION CLASS	OPERATING CHARACTERISTICS	PENETRATION	
		PEAK INSTANTANEOUS	ANNUAL AVERAGE
LOW	 Diesel runs full time Wind power reduces net load on diesel All wind energy goes to primary load No supervisory control system 	< 50%	< 20%
MEDIUM	 Diesel runs full time At high wind power levels, secondary loads dispatched to ensure sufficient diesel loading Alternatively, wind turbines are curtailed during high winds and low loads Requires relatively simple control system 	50 – 100%	20 – 50%
HIGH	 Diesels may be shut down during high wind availability Auxiliary components required to regulate voltage and frequency Requires sophisticated control system 	100 - 400%	50 – 150%

Kotzebue Electric Association Low Penetration Wind-Diesel System

- Application: Village power system
- Operating with ten turbines since spring 1999

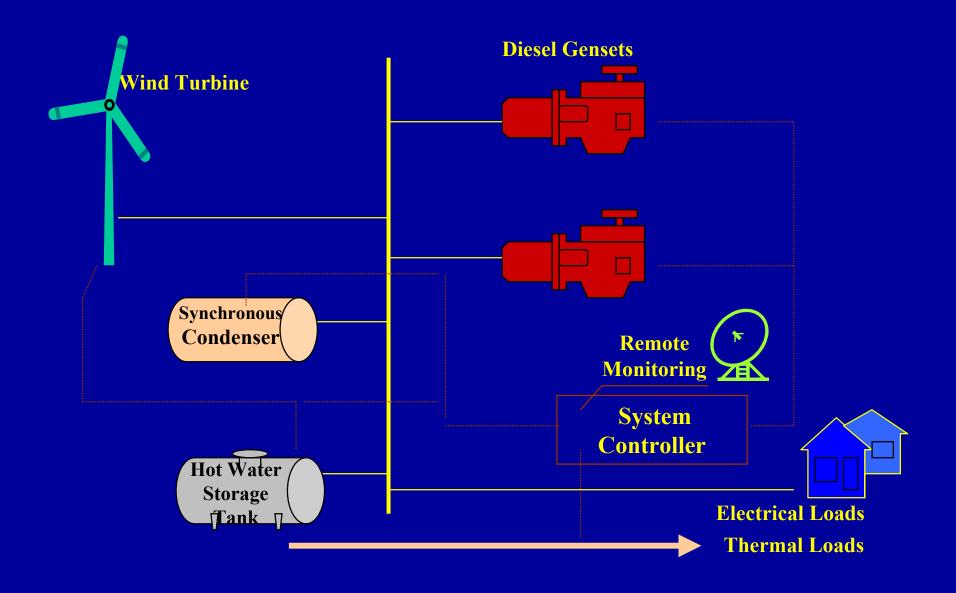
Kotzebue Wind-Diesel System Performance Summary

- Diesel Power Plant: 11.2 MW
- Village load:
 - 2.5 MW average
 - 1.8 MW minimum
 - 3.9 MW peak
- Wind Turbine Capacity: 650 kW
 - Ten AOC 15/50 kW turbines
- Average wind penetration: $\sim 6\%$
- Peak power penetration: $\sim 35\%$
- KEA plans expansion to 2-3 MW of wind turbine capacity

St. Paul High Penetration, No Storage Wind-Diesel System

Application: Power system to serve electrical and thermal loads at an industrial/airport facility

Operating since June 1999



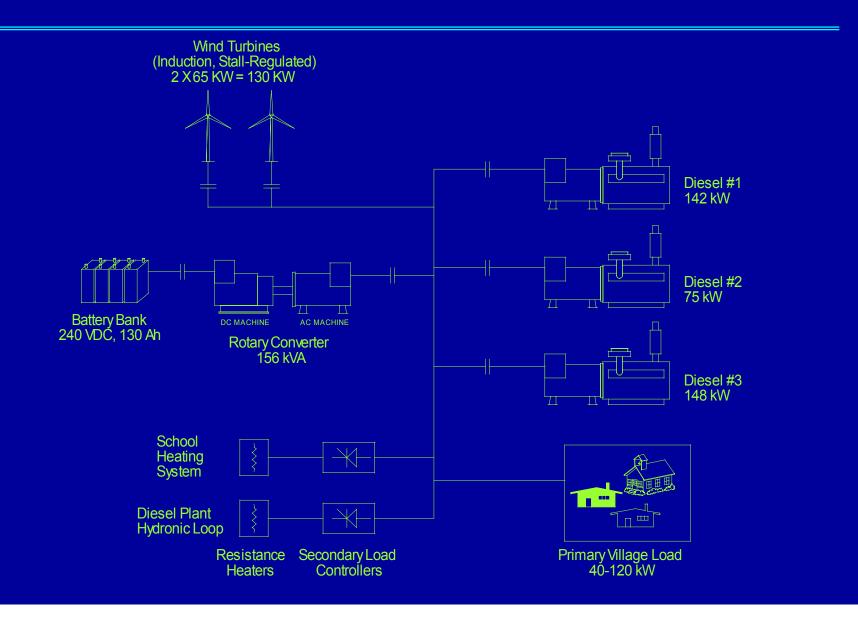
St. Paul High Penetration, No Storage Wind-Diesel System

- Diesel Power Plant: (2) 150 kW diesel gensets
- Primary load:
 - ~ 70 kW average
 - ~ 160 kW peak (with load growth planned)
- Wind Turbine Capacity: (1) 225 kW wind turbine
- Additional Components:
 - 300 kVA Synchronous Condensor
 - 446 kW electric hot water tank (Secondary Load)
 - System Control
- Average annual penetration: $\sim 100\%$
- Peak penetration: > 400%

St. Paul Wind-Diesel System Architecture

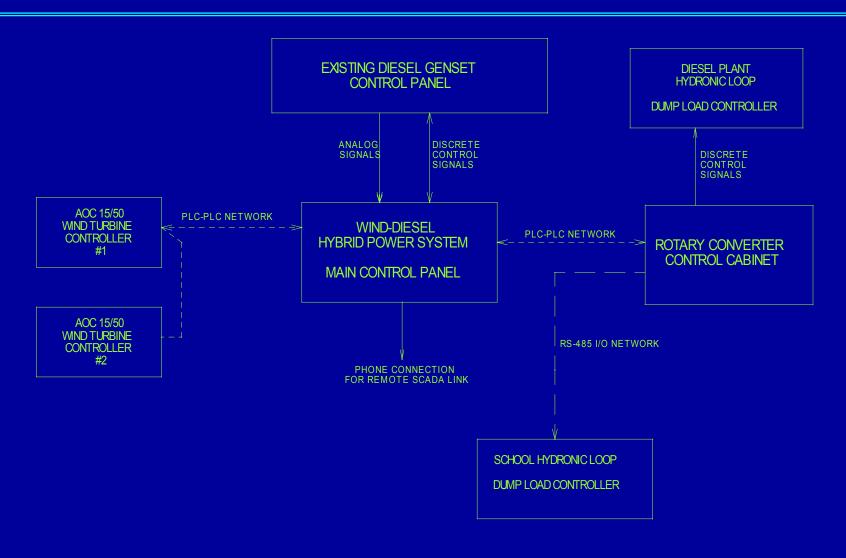
Wales High Penetration Wind-Diesel System with Short Term Energy Storage

Application: Village Power System In partial operation since October 2000


NREL

Wales High Penetration Wind-Diesel System with Short-Term Energy Storage

- Diesel Power Plant: (2) 168 kW + (1) 75 kW = 411 kW
- Primary load:
 - $\sim 70 \text{ kW}$ average
 - ~ 140 kW peak
- Wind Turbine Capacity: (2) 65 kW wind turbines
- Additional Components:
 - 156 kVA Rotary Converter
 - 31 kWh Battery Bank
 - 234 kW Electric Boiler Secondary Loads System Controls
- Average annual penetration: $\sim 100\%$
- Peak penetration: ~ 350%



Wales Wind-Diesel System Architecture

Wales Wind-diesel System Communication And Control

Review of Wind-Diesel Classes

Low Penetration

- Lowest capital cost
 - (\$1,000-1,500/ kW wind capacity, excluding diesel plant)
- Easiest to integrate with existing diesel system
- No diesel plant modifications necessary
- Only modest fuel savings possible: up to $\sim 20\%$
- Additional support requirements:
 - Wind turbine maintenance

Review of Wind-Diesel Classes

Medium Penetration

- Higher capital cost
 - (\$1,500-2,500/ kW wind capacity, excluding diesel plant)
- Some diesel controls modifications necessary
- Automated diesel operation desirable
- Usually must install/integrate secondary loads
- Requires relatively simple supervisory control
- Greater fuel savings possible: up to ~40%
- Additional support requirements:
 - Wind turbine maintenance
 - Secondary load maintenance
 - Basic control system troubleshooting

Review of Wind-Diesel Classes

High Penetration

- Highest capital cost
 - (\$2,500-4,000/ kW wind capacity, excluding diesel plant)
- Significant diesel controls modifications may be necessary
 - New diesel control panels highly recommended
- Must install/integrate secondary loads
- Requires sophisticated supervisory control system
- Highest fuel savings possible: up to $\sim 70\%$
- Additional support requirements:
 - Wind turbine maintenance
 - Secondary load maintenance
 - Advanced control system troubleshooting

Conclusions

- Several distinct approaches to wind-diesel exist, each with its own architecture
- Higher wind penetration means higher capital cost but lower operating cost and greater fuel savings
- High penetration systems have greater complexity and require greater technical sophistication
- Training and support infrastructure essential
- Given good wind resource and adequate project density, high penetration wind-diesel systems can provide least life cycle cost of electricity in remote communities.